
AD A 44 385 THE GRID FE A DATA STRUCTURE DESIGNED TO SUPPORT /
PROXIMIT SUERIES ON..U S NSTIU FLIER INFORMATI
ZURICH (SWITZERLAND) HINRICSET AL JUN 83

UNCLASSIFIE DAJA37-82-C 0058 F/ 12/1*uummu.m
IEIPD

9 P



IA.' L 2I8 111225IIIIII,.o
13.2 *'

11111 111
(1111125 4III' .4 III

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAU OF $TANDA RD, lqb A



in

Annual Progress Report II, June 1983

ERO Contract No. DAJA 37-82-C-058

Survey of Efficient Data and File Structures

Principal investigator:
Prof. Jurg Nievergelt, Informatik, ETH, CH-8692 Zurich

The first-year activities supported by this contract fell into two categories:

1) Survey of ongoing research elsewhere:

The first workshop in June 1982 gave a broad overview of algorithms and data structures
for computational geometry used in many different applications.
The second workshop concentrated on sweep algorithms and data structures
for CAD, reflecting more closely our own research interests.

2) Our own research:

G. Beretta has implemented the plane-sweep algorithm, as described in the quarterly report
of December 1982, on the personal computer Lilith, developed at ETH Zfirich.

1. Mintyli (Helsinki University of Technology) and 3. Nievergelt cre developing
space-sweep algorithms for solving intersection problems in 3-dimensional space.
The space-sweep will be described in a later report.

K. Hinrichs has implemented the grid file on the Lilith personal computer and on a
DEC VAX 11. On the Lilith there exists a graphic user interface as described in the
paper included with this report.

H. Hinterberger is following up on his earlier work in concurrency control for the
grid file (described in the September 82 quarterly report).

The grid file is now being used for analyzing photographic satellite data.
We hope to report on this work later.

DTIC
ELECr.)
AUG 1 3 1984

LAA

This docu~ment has been approved
fer p':blic r, Ie(iqe and pale. itsLA_. di.-tribution i, uinlimited.

*3408 01 011

...... ,~ ..--. --... . ... .. . .. .



1

The grid file:
a data structure designed to support proximity queries on spatial objects

L Kh ;d SM J. MseP
Institut Mr IaIbruati, rM. CH-U1S9 Zl

A~ftrct
We describeA technique for sting large sets of spatial objects so that proximiy queme are handled
efficiently a part of the accesing mechanism. This technique is based on a transfrmation of spatial
objects into points In higher-dimensional spaces and on a data structure called the grid file. The grid file
was designed to stor higjy dynamic sets of mulfl-dlmeusional data in such a way that it can be accesse
using few disk accesses: a point query requires two disk cesa range query requires at most two disk
accesses per data bucket retrieved. The efficilency of our technique is based on two facts:

many types of proximity queries lead to cone-shaped regions of the search space. and
" the grid file allows an efficient enumeration of all the points In such a cone.

Contents

1. Limitations of conventional techniques for storing spatial objects
2. Representation of spatial objects as points In higher-dimensional spaces
3. Proximity queries lead to cone-shaped search regions
4. The grid file as a data structure for storing simple spatial objects
S. Implementation of the grid file
6. Comparison of the grid file with other file structures

Paper presented at the
Workshop on Graphtheoreic Concepts in Computer Science

Owabrick. June 1983

, ol.

Supported In part by the European Research Office, US Army, under contract DAJA37-82-C-00S89. R&D
4093-CC.

mill~~~ 1- --- --oset-



2

L Uimitatons of conventional techniques for storing spatial objects

File structures for storing large amounts of geometric data are of Increasing Importance in applications such
as computer graphics. geographic Information systems, and computer-aided design, for example In VLSI.
Such interactive applications of geometric data structures require storage schemes that support efficient
proxbw&l queres such as Intersection, containment and range queries. In addition to proximity, it Is
desirable that the storage scheme reflects as many topological and geometric properties of spatial objects as
conveniently possible, such as the type of an object, or bounds on Its spatial extension.

Much effort has been Invested in the development of data structures for managing sets of ponts in 1-, 2-
and 3-dimensional space (e.g. binary trees, quad trees (BenFr79 oct trees and priority search trees
IMcCr82D. In contast, known techniques for managing spaial object, that Is, geometric configurtions
that extend over regions of space, are primitive. Most often. data structures designed for storing points are
adapted In a straightforward manner to storing spatial objects, as the following two widely used schemes
show.

1) An object may be Identified with a set of represensulvepoins that define some Important aspects of the
object - for example, the vertices of a polyhedron. Each of these points Is stored together with a reference
to the corresponding object The resulting redundancy nherent In this storage scheme (the same object is
being pointed at from many different places) makes updating expensive. For example, inserting an object
requires inserting all of its representative points; since these may be spread out In space, they are likely to
be spread out over the disk as well. Thus updating even a simple object (whose description easily fits onto
a page) may require several disk accesses.

2) An object may be stored via one represntalvepohK, such as Its center of gravity. The Information that a
given point in space is the representative point of a stored object conveys no further Ifonation (such as
the type of object it is. or its extent) without accessing the full description of the object, which we asume Is
stored on disk. Therefore proximity-based access Is poorly supported by this approach.

We present an alternative technique for storing spatial objects designed to overcome some of these
deficiencies. It is based on a trantormalon of spatial obJects into points In hsher-dmenslonal spaces and
on a data structure called the grid Ue. The presentation and assessment of this new approach Is organized
as follows:

Section 2 presents two well-known techniques used to approximate or decompose complex spatial objects
Into simpler ones. If these simple primitives (e.g. boxes, spheres and cylinders) are determined by a fixed
number of parameters, then they may be considered to be points In higher-dimensional spaces.

Section 3 describes a geometric interpretation of basic access and proximity problems on sets of simple
objects. Range, Intersection and containment queries result In cone-shaped search regions In the
corresponding higher-dimensional spaces.

Section 4 describes the grid file which is designed to sweep such search regions efficiently. This multi-key
file structure treats all space dimensions symmetrically, adapts its shape to dynamically varying contents,
and supports efficient range queries.

Section 5 describes the functional aspects of the Implementation of the grid file and of a graphic user
Interface that turns the grid file Into a simple geometric data base.

Section 6 evaluates the grid file In relation to other file structures for storing multi-dimensional data.

2. Representation of spatial objects as points In higber-dOmensionai spaces

Complex spatial objects can be represented or approximated by simpler ones In a variety of ways. Two
widely used techniques are illustrated In Fig. 1 and FIg. 2. In constructive solid modelling an object Is
represented as a boolean expression over simpler objects (Fig. 1). In other cases it Is approximated by
enclosing It In a container chosen from a clam of simple shapes (Fig. 2). The most Important properties for
proximity-based access to spatial objects are preserved by such representations.

t



3

Fig. 1: Decomposition of complex objects Into simpler ones.

Fig. 2: Approximation of complex objects by containers.f

As building blocks of such representations or approximations we consider classes of simple spatial objects
such as the class of all aligned rectangles in 2-d spac, or the class of all spheres in 3-d space. Within its
class, each object is defined by a small fixed number of parameters. For example, an aligned rectangle (I.
e. arectanglewitdes paralel toe axe) ca bedescribed byts center (c. cy) and the half-length of
each side, di and dy: and asphere by the coordinates of Its center (cz. cy. cx)and Its radius r.

Any simple object, defined within Its clas by k parameteri, can be considered to be a point In a
k-dimensional space assigned to Ito dlam ANll il eoie wd 1qpdleglca~ppenle can be deduced Iron
dhe clAn ft belonp to and fems ue cooudbsuis qf Mhe conwafdl PolaL For example, a aligned
rectangle beoes a point In 4-dimensional space, a rectangle In general position Is represented by a point
In S-dimensional space.

The technique to be presented for storing spatial objects works for any choice of parameters by which
* simple objects can be represented. However, depending on characteristics of the data to be processed,

some choices of parameters are better than others. Let us discuss some considerations that may determine
the choice of parameters.

1) istinction between lmaerba peuwuers ad extensiem prwuneert For some clasm of simple objects It
* isk reasonable to distinguish location parameter sumch a the center (dx, cy) of an aligned rectangle, or the

center Ocx. cy. cz) of a sphere Dtom extension parameters, such a the half-sdes dx and dy, or the radlu r.
This distinction Is always possible for objects that can be described a Cateslin products of spheres of
various dimensions. For exmple a rectangl Is the product of two 1-dimensional spheres, a cylinder the
product of a 1-d and a 2-d sphere Whenever this distinction can be made, ae-shapedl search regions
generated by proximity quelmes e described in section 3 have a simpler Intuitive Interpretation: The
subspace of the location parameter. acts a a *mIrWc tha reflect a query point

I ~ i k



4

2) independence of parmeters. uniform distribution. As an ample, consider the clm of all Intervals as
a straight Use (FMg. 3a). If Intervls art represented by their left and right endpoints, Is and rx. the
constraint lz < = na restricts all repsntis of these Intervals by points ft, v) to the triangle above the
diagonal in fig3b. Any data structure that organizes the embedding space of the data polns a opposed
to the particular met of points that must be sto=d will pay some overhead for representing the unpopulated
half of the embedding space A coordinate transformation that distributes data all over the embedding
space will lead to more efficient storage. T'he situation can be even was than than this. In most
applications the building blocks from which complex objects are built are much smaller than the Spame In
which they are embedded a the size of a brick Is mall compared to the siu of a house. If so. parameters
that locate boundaries of an object, such a Ozx. rz), ane highly dependent an chb other. FMg. 3b shows how
short intervals on a long Usne cluster along the diagonaL leaving large regions of a large embedding space
unpopulated; whereas the same set of intervals represented In FWg 3c by separating location parameters
from extension parametemx fills a smaller embedding space In a much more uniform way. The data
distribution of FIg. 3c is easier to handle than the one of Fig. Ab

IC.

Fig. 3: Repesentation of Intervals by lete and ight enpit.

3.Proximity queries lad to cone-Sbaped search regions

Te example of Intersection of simple objects will show how to tret basic proximity queries. Given a clm
C of simple spatial objects defined by a fixed number of parametemz the corresponding higher-dimensional
space IL ad a set S c C of simple objects represented as points In HL we consider two types of queries:

- point query: given a query point q. find all objects In S which contain q;
- point set query: given aset Qof points, find all objects InS which Intersect Q.

Given a point q we can describe exmcity the region In H that contains all points representing objects In S
which contals q. For Instance let Cbe the dam of Intervals an astraght HLne An Interval given by Its
centercaxad Its halflength dicontans apontq with coordnate qxIfadcmyfaz- da(=- q ( - cx +
di 011s. 40. ftg 4b shows the cone-shaped region In 2-d space that contains all points representing



o 4 0

Fig. 4a: Point queries and point set queries in the clam of intervals on a stnlght line
(q = query point. Q - query Interval).

• V
4 N

A a

Fig. 4b: Search region for a point query in the class of Intervals on a straight line.

dn

I •
I 4x

Fig. 4c: Search region for an interval intersection query.

Given a set of points Q, the region in H that contains all objects in S which intersect Q is the union of the
regions that result frm the point queries for each point In Q. This union ofcona is a particularly simple
region in H If the query set Q is a simple spatial object. Consider three examples.

1) The class of intervals along the z-ais (Figr 4a). An Interval (cx. dx) intersects a query Interval Q = (cq,
do) iff Its representing point lies in the shaded region shown In Fig. 4c; this region is given by the
inequalitiescx- dx (= eq + dq andcz + ds)= cq- dq.

2) The class C of aligned rectangies fIn the plane (with parameters in section 2) can be treated as the
Cartesian product of two classes of Intervals one along the &-axis, the other along the y-auis. All rectangles
which Intersect a given rectangle Q (f Sa) ame represented by points In 4-d Wae lying in the Cartesian
product of two Interval intersection query regions (Fi Sb). The region is shown by its projections into the
ca-di-plane and the cy-dy-plane.



Fig. Sa: Aligned rectangle Intersection (Q = query rectangle).

An, dy

A

aS

ID6

1 5 A C E

I LX4 C)'

Fig. Sb: Search region for a rectangle intersection query.

3) The class C of circles in the plane. As parameters for the representation of a circle a a point in 3-d
space we choose the coordinates of its center (cz, cy) and its radius r. All circles which contain a point q
(Fig. 6a) are represented in the corresponding 3-d space by points lying in the cone shown In Fig. 6b. The
axis of the cone is parallel to the r-axis, its vertex is q considered as a point In the ci-cy-plane. All circles
which Intersect a line segment L are represented by points lying in the cone-shaped solid shown In fg 6c.
This solid is obtained by embedding L In the cx-cy-plane and moving the cone of Fig. 6b along L All
circles which intersect a rectangle R are represented by points lying in the cone-shaped solid shown In Fig.
6d.

y,

I'

Fig. 6s: Point queries and point set queries In the cla of cr€cles In the plane
(q = query point, L - query line seSment, R - query rectange).



7

Cr

Cy

Fijg. 6b: Search regon for a point queiY In the clan of crces in the plane.

CK

L

Fig. 6c: Search region for an Intersecton queay between a given line segment L and circles.



RSfp

Fig. 6d: Search region for an intersection query between a given rectangle R and circles.

Although the examples above Involve only 1-d and 2-d objects, analogous proximity queries on sets of
3-dimensional simple spatial objects lead to cone-shaped search regions In higher-dimensional spaces In
exactly the same way.

4. The grid file as a data structure for storing simple spatial objects

The efficiency of a file structure for storing simple spatial objects depends on how fast basic proximity
queries can be answered. For typical applications envisioned, such as CAD, the size of the geometric data
bases involved is such as to preclude the possibility of keeping all the objects being processed in central
memory. Instead, they must be fetched from disk during processing. often In response to proximity
queries. Thus speed of access Is best measured In terms of the number of disk accesses involved.

As In the case of object intersection, each of these queries defines for each type of object a cone-shaped
search region in the corresponding higher-dimensional space. To minimize the number of disk accesses in
range queries an efficient file structure should preserve locality: objects of the same type which are
represented by points that are near to each other should have a high probability of being stored In the same
physical disk block. Furthermore the file structure should handle all space dimensions symmetrically and
adapt its shape dynamically under Insertions and deletions.

The grid file, a file structure for storing multi-dimensional data, was designed to meet these requirements.
It partitions the data space from which the points are drawn according to an orthogonal grid. The grid on a
k-dimensional data space Is defined by k 1-dimensional arrays, called the scales. Each element of a scale
represents a (k-1)-dimensional hyperplane that partitions the space Into two. Thete Is a one-to-one
correspondence between the grid defined by the scales and a k-dimensional dynamic array, called the grid
directory. An element of this array is a pointer to a disk block, called a data bucket, which contains all data
points that lie in the corresponding grid cell. To avoid low bucket occupancy, several grid cells may share a
bucket. Such a set of grid cells is called a bucket region. Bucket regions are only allowed to have the shape
of a k-dimensional rectangular bos. These bucket regions are pairwise dijoint, together they span the data
space. Fig. 7 shows the organization scheme of the grid file.

L In

A6



Fig. 7: Organization scheme of the grid file (k = 2).

During operation of the file system the grid directory and the scales need to be modified In response to
Insertions and deletions of points. An overflowing bucket Is split into two by the following rule: if its
bucket region covers only one grid cell the grid has to be extended by a (k-1)-dimensional hyperplane that
cuts the bucket region into two. This is achieved by Inserting a new boundary Into one of the scales and
maintaining the one-to-one correspondence between the grid and the grid directory. In any case there now
exists a hyperplane separating the bucket region Into two. To each of these two regions a new bucket Is
attached by updating the grid directory, and the points stored In the overflowing bucket are distributed
among the new buckets correspondingly (fig. 8).

TE .

"_II .m.• " ,,,,,...

Fig. 8: Splitting of a bucket (k = 2).

Conversely, If the joint occupancy of two adjacent buckets drops below a certain threshold, they may be
merged into one, as long a the new bucket region remains rectangular.

The grid directory is likely to be large and must therefore be kept on disk, but the linear scales are small
and can be kept In central memory. Therefore the grid file realizes the two-disk-eccxprinclple for single
point retrieval: by searching the scales, the k coordinates of a point are converted into Interval indices
without any disk accesses; these Indices provide direct access to the correct element of the grid directory on
disk, where the bucket address Is located. In a second access the conect data bucket (I.e the bucket that
contains the point to be searched for, it It exists) Is read from disk.

In most data structures, In particular those based on pointer chains or on overflow buckets, an unsucessfl 
search takes considerably longer than an average successful search. The grid file Is a notable exception, In
that both succestl and unraeccsOi! singlepd qucles we handled iL tw dtrk ccee

We have seen that basic proximity queries on sets of simple spatial objects represented as points In
bhiger-dimensional spaces lead to cone-shaped search regions. In order to answer such a query with a grid
Me, all grid cells which Intersect the serch reion must be computed, since the buckets corresponding to
these grid cells are exactly those that can contain points to be searched for (FIg 9).



y,

t I

I U 10

I 8

I I

I U
I *
I I

- II

Y-scale

II

i l l I I I i
x-scale

Fig. 9: Basic proximity query In a grid file.

This computation is done with the aid of the scales without any disk acce=es. The buckets corresponding to
the intersecting grid cells are then accessed via the grid directory. If a bucket region is not completely
contained in the search region, each point stored in the bucket must be examined individually to determine
whether it belongs to the search region.

The grid directory is again a large amount of multi-dimensional data that must be stored on disk, and a
cone-shaped search region in the space of data points results in a "staircase approximation" to this cone in
the directory. As in the case of data points, grid directory elements which correspond to contiguous grid
cells should have a high probability of being stored in the same disk block. Thus, in order to "minimize"
the number of disk accesses, the grid directory is again stored on disk as a grid file. The resulting data
compression leads to the concept of the resident grid directory, it manages the grid directory on disk but is
small enough to be kept in central memory, like the scales. The resident grid directory is a scaled down
version of the real one, in which the limit of resolution is coarser. It distributes grid directory elements
among disk blocks as shown in Fig. 10. All space dimensions are handled symmetrically, as opposed to the
common row by row or column by column storage schemes for arrays.

gid dirwory

resident pid directory

Fig. 10: The resident grid directory.

A more detailed description of the grid file, along with performance measurements. can be found In [NHS
I 11.



S. Implementation of the gr file

The grid file used for storing geometric data has been implemented In MODULA-2 on the LIMU personal
computer [Wir 811 and the DEC VAX 11/780. On the Ulith a graphical user Interface exists (see Fig. 11).
embedded in the integrated Interactive operating system XS-1 [Ber 82L It allows the user to input
geometric data (rectangles, circles and line segments) and queries (intersection. containment) Interactively
with a mouse. On the VAX the grid file runs under VMS. An experiment is underway to study clustering
algorithms that use the grid file for preprocessing photograhic satellite dats.

P! stepate .. grifla zm

finished READY:
D0oD"sk Modes M s a rectory

GridFile fa. Directory
Site Sit e D irector y - rldfllPlod# e

moOtl Sites Si e Ifrectryy griddirdeno Hade
macop Sites 51c fratctory Plane owesp Made Directory
DuoDtalogs ,4Site Director X fMIX. ade

~~ lb fin l
C Insert

Fig. 11: Graphical user interface to the grid file in the XS-1 system, showing the result
to the query: "Find all objects that do NOT intersect a given query circle".

In order to facilitate the portability of the grid file program, we have defined two interfaces: One towards
the host (hardware and operating system), the other towards client programs.

The module "HOST" separates the machine- and disk-dependent parts from the grid file module itself. It
has to provide procedures for:

- creating and initializing the disk storage;
- opening and closing communication channels between the disk and the grid file module;
- creating, deleting, reading and writing disk blocks;
- managing empty disk blocks;
- allocating and deallocating dynamic storage.

Therefore the grid file can be transferred to other computers by only adapting this lower module.

In the current implementation of the module CLIENT the keys of the records are only allowed to be of
type canrid. In a later version other key types such as reals or character strings will be supported. Besides
their identifying keys xI, ... . zk, records may contain some additional information which is not of interest
for the grid file. When creating a grid file the user has to declare whether the records are uniquely
Identified by their keys. "CLIENT" provides procedures for:

',' t



12

- creating deleting, opening and closing a guldfie.
- Insertng and deleting recordstoa grid fle'.
- changing son-key Information In a record.

Furthermore OCUEN1 allows the following queries to be performned, on the data.

- identity query: find all records with given key values il. .,A

(if keys are unique at most one record will be found);
- keyruztge query: find all records whom key valueuxlllueln gvenlintervals PIuW](I( <1I k):
- procedure quertheuser has towrieaprdureh hiIspasedtotheid filemodule and

which determines whether a grid cell (iven by Intervals PII, ul( (<= I < = k )) contains records
to be searched for, this gives the user the possibility to Influence the query during execution;

- nextabove. neitbelow: given key I with key value xL, find the records with key values above or
below I and next to xl; this gives the user the possibility to read all the records sequentially
with respect to one key.

6.Coparison of the grid fie with other file structures

Having seen that object storage, when reduced to multI-dimensional point storage. leads to cone-shaped
search regons, the following comparison of the grid fie with conventional data structures can be limited to
point storage. As stated In section 4, an efficient file strcture for storing multi-dimensional data must
preserve neighborhood relations. Among the structures that preserve proximity to various degrees we
consider Inverted flis multi-dimensIonal trees [Ben 791. and Interpolation-based Index maintenance [Bur
821.

The bsveredfdle treats space dimensions in a highly asymmetric way: space Is partitioned Into thin slices
orthogonal to the primary key axis (Fig. 12).

secongary Key

Fig. 12: Space partitioning by an Inverted file.

All data points Ina lice are stored In one data bucket. A i.1 hw.arneqeyQ rhgnlt
th primary key Is handled very efficiently (with "high precision" In the terminology of Information

retrieval), whereas range queries on secondary keys, such as Qy. or cone-shaped queries, yield results of
low precision. "Salami mIlceC~ are poor primitives for approximating linearly bounded search regions.

Like the grid file. a Puw-Ad~rwao=ae tree handles all space dimensions symmetrically. Thus the space
partition Induced yields rectangular bucket regions better suited for approximating cone-shaped search
region than the Slices Of the Inverted fil



13

16
H I

14 F HI I I

12 E N

10, D
10I - I

I Ij

6
IC4 I JI L

A I

24I

o ..... -4 4
0 2 4 6 U 10 12 14 16 '

.6, :9 :13 :14 :2 .3 :5 :12

A B C D E F G H I J K L 0 N P

Fig. 13: Space partitioning by a multi-dimensional tree.

The difference between the grid file and the multi-dmensional tree shows up in computing the buckets
whose regions intersect the query region. The information about the boundaries of bucket regions is
distributed across the entire tree, and in general many root-to-leaf paths must be traversed before a given
bucket region can be Included or excluded from the answer. The tree is likely to be large and therefore has
to be stored on disk. Some of the paths will share links, but contiguous bucket regions In general
correspond to non-contiguous subtrees (Fig. 13), so even a small query region Is likely to be spread across
the tree, and may require many disk accesses to retrieve all the relevant data buckets.

Interpolatlon-based Index maintenance recently Introduced by Burkhard. reflects the current trend In
designing file structures: Away from list structures that must be broken across disk block boundaries,
, -tos hniques that approximate direct access INie 811. It uses a grid partition of

'Um1Win Sur ain I deter n- by a radix, similarly to the grid file. The correspondence between
bucket regions and buckets is given by formulas (interpolations") rather than by a directory as used In the
grid file. The trade-offs involved in the decision of using a directory, as In the grid file, or avoiding It. as In
interpolaton-based index maintenance, are an Interesting topic for research.

Based on experience with grid Me Implementations we believe that the approach presented In this paper Is
effective for storing large sets of spatial objects in such a way as to support proximity queries. The
considerations above suggest that It is a proming alternative to conventional techniques. We hope others
will join us in experimenting with the approach of transfoming objects Into points In higher-dimensional
spaces and storing them in a grid file.



14

Plen 79j
3. L Bentley: MultI-dimensional Binary Search Trees In Datsam-Applcations,
MUE Transactions on Software Engineering. Vol. SE-S. No. 4.1979,333 -340.

IBenFr 791
J. L Bentley. J. H. Friedman: Data Structures for Range Searching.
Computing Surveys, Vol. 11, No. 4.1979.397 -40.

[Ber 82]
G. Beretta. et al: XS-1: An integrated Interactive system and Its kernel.
Proc. 6-tb It Conf~ Software Engineering. Tokyo. 340-349. IEEE Computer Society. 1982.

(Bur 821
W. A. Burkbard: Interpolation-Based Index Maintenance,

T.R. CS-053, UCSD, Dep. of EECS, 1982, to appear In BIT.

J.Encarnacao. F.-L Krause (editous): Proceedings of the WMI WG 5.2 Working
Conference on File Structures and Data Bases for CAD. 1982.

(McCr 821
L. M. McCreight Priority Search Trees, Report CSL-81-5. XEROX Corp.. 1982.

INHS 811
3. Nievergelt, H. Hinterberger. K. C. Sevcik:
The grid file: an adaptable, symmetric multi-key file structure,
Report No. 46, Institut lily Informatik, ETH ZMrch, 1981 (to appear In ACM TODS).

INie 811
J. Nievergelt: Trees a data ad file structures,
in CAAP'81, Proc. 6-tk Coll. on Trees In Algebra and Programming,
E. Astesiano and C. Bohm (eds.), Lecture Notes in Computer Science 112. 35-45,
Springer Verlag 1981.

IWir 81)
N. Wirth: The personal computer Ulith,
Proc. 5th International Conference on Software Engineering. 2-15.
IEEE Computer Society Press, 1981.



IuL~


